Calculate and plot posterior densities of the projected estimates
Source:R/ridgePlot.R
ridgePlot.Rd
The function ridgePlot
replaces the previous function name getSmoothedDensity
(before version 1.0.0).
Usage
ridgePlot(
x = NULL,
nsim = 1000,
draws = NULL,
year.plot = NULL,
year_plot = deprecated(),
strata.plot = NULL,
strata_plot = deprecated(),
by.year = TRUE,
ncol = 4,
scale = 2,
per1000 = FALSE,
order = 0,
direction = 1,
linewidth = 0.5,
results = NULL,
save.density = FALSE,
...
)
Arguments
- x
output from
smoothDirect
for the smoothed direct estimates, orsmoothCluster
for the cluster-level estimates.- nsim
number of posterior draws to take. Only used for cluster-level models when
draws
is NULL. Otherwise the posterior draws indraws
will be used instead without resampling.- draws
Output of
getSmoothed
withsave.draws
set to TRUE. This argument allows the previously sampled draws (by settingsave.draws
to be TRUE) be used in new aggregation tasks. This argument is only used for cluster-level models.- year.plot
A vector indicate which years to plot
- year_plot
- strata.plot
Name of the strata to plot. If not specified, the overall is plotted.
- strata_plot
- by.year
logical indicator for whether the output uses years as facets.
- ncol
number of columns in the output figure.
- scale
numerical value controlling the height of the density plots.
- per1000
logical indicator to multiply results by 1000.
- order
order of regions when by.year is set to TRUE. Negative values indicate regions are ordered from high to low posterior medians from top to bottom. Positive values indicate from low to high. 0 indicate alphabetic orders.
- direction
Direction of the color scheme. It can be either 1 (smaller values are darker) or -1 (higher values are darker). Default is set to 1.
- linewidth
width of the ridgeline.
- results
output from
ridgePlot
returned object withsave.density = TRUE
. This argument can be specified to avoid calculating densities again when only the visualization changes.- save.density
Logical indicator of whether the densities will be returned with the ggplot object. If set to TRUE, the output will be a list consisting of (1) a data frame of computed densities and (2) a ggplot object of the plot.
- ...
additional configurations passed to inla.posterior.sample.
Value
ridge plot of the density, and if save.density = TRUE
, also a data frame of the calculated densities
Examples
if (FALSE) { # \dontrun{
years <- levels(DemoData[[1]]$time)
data <- getDirectList(births = DemoData,
years = years,
regionVar = "region", timeVar = "time",
clusterVar = "~clustid+id",
ageVar = "age", weightsVar = "weights",
geo.recode = NULL)
# obtain direct estimates
data_multi <- getDirectList(births = DemoData, years = years,
regionVar = "region", timeVar = "time", clusterVar = "~clustid+id",
ageVar = "age", weightsVar = "weights", geo.recode = NULL)
data <- aggregateSurvey(data_multi)
# national model
years.all <- c(years, "15-19")
fit1 <- smoothDirect(data = data, geo = NULL, Amat = NULL,
year.label = years.all, year.range = c(1985, 2019),
rw = 2, m = 5)
## Plot marginal posterior densities over time
ridgePlot(fit1, year.plot = years.all,
ncol = 4, by.year = FALSE)
# subnational model
fit2 <- smoothDirect(data = data, geo = DemoMap$geo, Amat = DemoMap$Amat,
year.label = years.all, year.range = c(1985, 2019),
rw = 2, m = 5, type.st = 1)
# Plot marginal posterior densities over time (regions are ordered alphabetically)
ridgePlot(fit2, year.plot = years.all, ncol = 4)
# Re-order the regions and save the density to avoid re-compute later
density <- ridgePlot(fit2, year.plot = years.all,
ncol = 4, per1000 = TRUE, order = -1, save.density = TRUE)
density$g
# Show each region (instead of each year) in a panel
## Instead of recalculate the posteriors, we can use previously calculated densities as input
ridgePlot(results = density, year.plot = years.all,
ncol = 4, by.year=FALSE, per1000 = TRUE)
# Show more years
ridgePlot(results = density, year.plot = c(1990:2019),
ncol = 4, by.year=FALSE, per1000 = TRUE)
# Example using surveyPrev package output
library(surveyPrev)
dhsData <- getDHSdata(country = "Rwanda", indicator = "nmr", year = 2019)
data <- getDHSindicator(dhsData, indicator = "nmr")
geo <- getDHSgeo(country = "Rwanda", year = 2019)
poly.adm1 <- geodata::gadm(country="RWA", level=1, path=tempdir())
poly.adm1 <- sf::st_as_sf(poly.adm1)
poly.adm2 <- geodata::gadm(country="RWA", level=2, path=tempdir())
poly.adm2 <- sf::st_as_sf(poly.adm2)
cluster.info <- clusterInfo(geo = geo,
poly.adm1 = poly.adm1,
poly.adm2 = poly.adm2,
by.adm1 = "NAME_1",
by.adm2 = "NAME_2")
fit1 <- directEST(data = data, cluster.info = cluster.info, admin = 1)
fit2 <- directEST(data = data, cluster.info = cluster.info, admin = 2)
ridgePlot(fit1, direction = -1)
ridgePlot(fit2, direction = -1)
} # }