Generates nCoords x nsim matrix of simulated
values of the SPDE spatial process
Usage
simSPDE(
coords,
nsim = 1,
mesh,
effRange = (max(coords[, 1]) - min(coords[, 1]))/3,
margVar = 1,
inla.seed = 0L
)
Arguments
- coords
2 column matrix of spatial coordinates at which to simulate the spatial process
- nsim
number of draws from the SPDE model
- mesh
SPDE mesh
- effRange
effective spatial range
- margVar
marginal variance of the spatial process
- inla.seed
seed input to inla.qsample. 0L sets seed intelligently,
> 0 sets a specific seed, < 0 keeps existing RNG
References
Lindgren, F., Rue, H., Lindström, J., 2011. An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic differential equation approach (with discussion). Journal of the Royal Statistical Society, Series B 73, 423–498.
Examples
if (FALSE) { # \dontrun{
set.seed(123)
require(INLA)
coords = matrix(runif(10*2), ncol=2)
mesh = inla.mesh.2d(loc.domain=cbind(c(0, 0, 1, 1), c(0, 1, 0, 1)),
n=3000, max.n=5000, max.edge=c(.01, .05), offset=-.1)
simVals = simSPDE(coords, nsim=1, mesh, effRange=.2, inla.seed=1L)
} # }