Skip to contents

[Experimental]

Usage

Benchmark(
  fitted,
  national,
  estVar,
  sdVar,
  timeVar = NULL,
  weight.region = NULL,
  method = c("MH", "Rejection")[2]
)

Arguments

fitted

output from getSmoothed to be benchmarked.

national

a data frame of national level estimates that is benchmarked against, with at least two columns indicating national estimates (probability scale) and the associated standard error. If benchmarking over multiple time period, a third column indicating time period is needed.

estVar

column name in national that indicates national estimates.

sdVar

column name in national that indicates standard errors of national estimates.

timeVar

column name in national that indicates time periods.

weight.region

a data frame with a column region specifying subnational regions, a column proportion that specifies the proportion of population in each region. When multiple time periods exist, a third column years is required and the population proportions are the population proportions of each region in the corresponding time period.

method

a string denoting the algorithm to use for benchmarking. Options include MH for Metropolis-Hastings, and Rejection for rejection sampler. Defaults to Rejection.

Value

Benchmarked object in S3 class SUMMERproj or SUMMERprojlist in the same format as the input object fitted.

References

Okonek, Taylor, and Jon Wakefield. "A computationally efficient approach to fully Bayesian benchmarking." Journal of Official Statistics 40, no. 2 (2024): 283-316.

Author

Taylor Okonek, Zehang Richard Li

Examples

if (FALSE) { # \dontrun{
##  ------------------------------------------ ##
##     Benchmarking with smoothCluster output
##  ------------------------------------------ ##

data(DemoData)
# fit unstratified cluster-level model
counts.all <- NULL
for(i in 1:length(DemoData)){
vars <- c("clustid", "region", "time", "age")
counts <- getCounts(DemoData[[i]][, c(vars, "died")], 
            variables = 'died',
             by = vars, drop=TRUE)
counts$cluster <- counts$clustid
counts$years <- counts$time
counts$Y <- counts$died
counts$survey <- names(DemoData)[i]  
counts.all <- rbind(counts.all, counts)
}
periods <- c("85-89", "90-94", "95-99", "00-04", "05-09", "10-14", "15-19")
fit.bb  <- smoothCluster(data = counts.all, Amat = DemoMap$Amat, 
        family = "betabinomial",
        year.label = periods, 
        survey.effect = TRUE)
est.bb <- getSmoothed(fit.bb, nsim = 1e4, CI = 0.95, save.draws=TRUE)

# construct a simple population weight data frame with equal weights
weight.region <- expand.grid(region = unique(counts.all$region), 
             years = periods)
weight.region$proportion <- 0.25

# construct a simple national estimates
national <- data.frame(years = periods, 
           est = seq(0.27, 0.1, length = 7), 
           sd = runif(7, 0.01, 0.03))

 # benchmarking
est.bb.bench <- Benchmark(est.bb, national, weight.region = weight.region, 
            estVar = "est", sdVar = "sd", timeVar = "years")

# Sanity check: Benchmarking comparison
compare <- national
compare$before <- NA
compare$after <- NA
for(i in 1:dim(compare)[1]){
  weights <- subset(weight.region, years == national$years[i])
  sub <- subset(est.bb$overall, years == national$years[i])
  sub <- merge(sub, weights)
  sub.bench <- subset(est.bb.bench$overall, years == national$years[i])
  sub.bench <- merge(sub.bench, weights)
  compare$before[i] <- sum(sub$proportion * sub$median)
  compare$after[i] <- sum(sub.bench$proportion * sub.bench$median)
}
plot(compare$est, compare$after, col = 2, pch = 10,
     xlim = range(c(compare$est, compare$before, compare$after)),
     ylim = range(c(compare$est, compare$before, compare$after)),
     xlab = "External national estimates", 
     ylab = "Weighted posterior median after benchmarking",
    main = "Sanity check: weighted average of area medians")
points(compare$est, compare$before)
abline(c(0, 1))
legend("topleft", c("Before benchmarking", "After benchmarking"), pch = c(1, 10), col = c(1, 2))

#  construct a simple national estimates
national <- data.frame(years = periods, 
             est = seq(0.22, 0.1, length = 7), 
             sd = runif(7, 0.01, 0.03))
# national does not need to have all years
national_sub <- national[1:3,]

# benchmarking
est.bb.bench <- Benchmark(est.bb, national_sub, 
            weight.region = weight.region, 
            estVar = "est", sdVar = "sd", timeVar = "years")

# Sanity check: only benchmarked for three periods
compare <- national
compare$before <- NA
compare$after <- NA
for(i in 1:dim(compare)[1]){
  weights <- subset(weight.region, years == national$years[i])
  sub <- subset(est.bb$overall, years == national$years[i])
  sub <- merge(sub, weights)
  sub.bench <- subset(est.bb.bench$overall, years == national$years[i])
  sub.bench <- merge(sub.bench, weights)
  compare$before[i] <- sum(sub$proportion * sub$median)
  compare$after[i] <- sum(sub.bench$proportion * sub.bench$median)
}
plot(compare$est, compare$after, col = 2, pch = 10,
     xlim = range(c(compare$est, compare$before, compare$after)),
     ylim = range(c(compare$est, compare$before, compare$after)),
     xlab = "External national estimates", 
     ylab = "Weighted posterior median after benchmarking",
    main = "Sanity check: weighted average of area medians")
points(compare$est, compare$before)
abline(c(0, 1))
legend("topleft", c("Before benchmarking", "After benchmarking"), pch = c(1, 10), col = c(1, 2))

#  Another extreme benchmarking example, where almost all weights in central region
weight.region$proportion <- 0.01
weight.region$proportion[weight.region$region == "central"] <- 0.97
# benchmarking
est.bb.bench <- Benchmark(est.bb, national, weight.region = weight.region, 
          estVar = "est", sdVar = "sd", timeVar = "years")
# It can be seen the central region are pulled to the national benchmark
plot(national$est, 
   subset(est.bb.bench$overall, region == "central")$mean,
   col = 2, pch = 10, xlab = "External national estimates", 
   ylab = "Central region estimates") 
points(national$est, 
   subset(est.bb$overall, region == "central")$mean) 
legend("topleft", c("Before benchmarking", "After benchmarking"), pch = c(1, 10),  col = c(1, 2))
abline(c(0, 1))

# Example with the MH method
# Benchmarking with MH should be applied when customized priors are 
#  specified for fixed effects when fitting the model
fit.bb.new  <- smoothCluster(data = counts.all, Amat = DemoMap$Amat, 
        family = "betabinomial",
        year.label = periods, 
        survey.effect = TRUE, 
        control.fixed = list(
          mean=list(`age.intercept0:1`=-4, 
                   `age.intercept1-11:1`=-5,
                   `age.intercept12-23:1`=-8,
                   `age.intercept24-35:1`=-9,
                   `age.intercept36-47:1`=-10,
                   `age.intercept48-59:1`=-11), 
          prec=list(`age.intercept0:1`=10, 
                   `age.intercept1-11:1`=10,
                   `age.intercept12-23:1`=10,
                   `age.intercept24-35:1`=10,
                   `age.intercept36-47:1`=10,
                   `age.intercept48-59:1`=10)))
est.bb.new <- getSmoothed(fit.bb.new, nsim = 10000, CI = 0.95, save.draws=TRUE)

#  construct a simple national estimates
national <- data.frame(years = periods, 
             est = seq(0.22, 0.1, length = 7), 
             sd = runif(7, 0.01, 0.03))
weight.region <- expand.grid(region = unique(counts.all$region), 
             years = periods)
weight.region$proportion <- 0.25             
est.bb.bench.MH <- Benchmark(est.bb.new, national, 
  weight.region = weight.region, 
  estVar = "est", sdVar = "sd", timeVar = "years",
  method = "MH")

compare <- national
compare$before <- NA
compare$after <- NA
for(i in 1:dim(compare)[1]){
  weights <- subset(weight.region, years == national$years[i])
  sub <- subset(est.bb.new$overall, years == national$years[i])
  sub <- merge(sub, weights)
  sub.bench <- subset(est.bb.bench.MH$overall, years == national$years[i])
  sub.bench <- merge(sub.bench, weights)
  compare$before[i] <- sum(sub$proportion * sub$median)
  compare$after[i] <- sum(sub.bench$proportion * sub.bench$median)
}
plot(compare$est, compare$after, col = 2, pch = 10,
     xlim = range(c(compare$est, compare$before, compare$after)),
     ylim = range(c(compare$est, compare$before, compare$after)),
     xlab = "External national estimates", 
     ylab = "Weighted posterior median after benchmarking",
    main = "Sanity check: weighted average of area medians")
points(compare$est, compare$before)
abline(c(0, 1))
legend("topleft", c("Before benchmarking", "After benchmarking"), pch = c(1, 10), col = c(1, 2))

##  ------------------------------------------ ##
##     Benchmarking with smoothDirect output
##  ------------------------------------------ ##
years <- levels(DemoData[[1]]$time)
# obtain direct estimates
data_multi <- getDirectList(births = DemoData, years = years,
                        regionVar = "region",  timeVar = "time", clusterVar = "~clustid+id",
                        ageVar = "age", weightsVar = "weights", geo.recode = NULL)
data <- aggregateSurvey(data_multi)
#  subnational model
years.all <- c(years, "15-19")
fit2 <- smoothDirect(data = data, Amat = DemoMap$Amat,
                 year.label = years.all, year.range = c(1985, 2019),
                 time.model = "rw2", m = 5, type.st = 4)
out2a <- getSmoothed(fit2, joint = TRUE, nsim = 1e5, save.draws = TRUE)

##
## Benchmarking for yearly estimates
##
weight.region <- expand.grid(region = unique(data$region[data$region != "All"]),
                             years = 1985:2019)
weight.region$proportion <- 0.25
# construct a simple national estimates
national <- data.frame(years = 1985:2019,
                       est = seq(0.25, 0.15, length = 35),
                       sd = runif(35, 0.03, 0.05))
# Benchmarking to national estimates on the yearly scale
out2b <- Benchmark(out2a, national, weight.region = weight.region,
                          estVar = "est", sdVar = "sd", timeVar = "years")
plot(out2a$overall)  
plot(out2b$overall) 

# combine the point estimate and compare with the benchmark values
national.est <- aggregate(mean ~ years, 
   data = out2a$overall[out2a$overall$is.yearly, ], FUN = mean)
national.est.bench <- aggregate(mean ~ years, 
   data = out2b$overall[out2b$overall$is.yearly, ], FUN = mean)

plot(national$est, national.est$mean,  
     xlim = range(c(national$est, national.est$mean, national.est.bench$mean)),
     ylim = range(c(national$est, national.est$mean, national.est.bench$mean)),
     xlab = "External national estimates", 
     ylab = "Weighted posterior median after benchmarking",
    main = "Sanity check: weighted average of area means")
points(national$est, national.est.bench$mean, col = 2, pch = 10)
abline(c(0, 1))
legend("topleft", c("Before benchmarking", "After benchmarking"), pch = c(1, 10), col = c(1, 2))



##
## Benchmarking for period estimates
##
weight.region <- expand.grid(region = unique(data$region[data$region != "All"]),
                             years = years.all)
weight.region$proportion <- 0.25
# construct a simple national estimates
national <- data.frame(years = years.all,
                       est = seq(0.25, 0.15, len = 7),
                       sd = runif(7, 0.01, 0.03))
# Benchmarking to national estimates on the period scale
out2c <- Benchmark(out2a, national, weight.region = weight.region,
                          estVar = "est", sdVar = "sd", timeVar = "years")
plot(out2a$overall)
plot(out2c$overall)

# combine the point estimate and compare with the benchmark values
national.est <- aggregate(mean ~ years, 
      data = out2a$overall[!out2a$overall$is.yearly, ], FUN = mean)
national.est.bench <- aggregate(mean ~ years, 
      data = out2c$overall[!out2b$overall$is.yearly, ], FUN = mean)

plot(national$est, national.est$mean,  
     xlim = range(c(national$est, national.est$mean, national.est.bench$mean)),
     ylim = range(c(national$est, national.est$mean, national.est.bench$mean)),
     xlab = "External national estimates", 
     ylab = "Weighted posterior median after benchmarking",
    main = "Sanity check: weighted average of area means")
points(national$est, national.est.bench$mean, col = 2, pch = 10)
abline(c(0, 1))
legend("topleft", c("Before benchmarking", "After benchmarking"), pch = c(1, 10), col = c(1, 2))


 } # }