Discrete-color maps based on the True Classification Probabilities
Usage
tcpPlot(
draws,
geo,
by.geo = NULL,
year.plot = NULL,
year_plot = deprecated(),
ncol = 4,
per1000 = FALSE,
thresholds = NULL,
intervals = 3,
size.title = 0.7,
legend.label = NULL,
border = "gray20",
size = 0.5
)
Arguments
- draws
a posterior draw object from
getSmoothed
- geo
SpatialPolygonsDataFrame object for the map
- by.geo
variable name specifying region names in geo
- year.plot
vector of year string vector to be plotted.
- year_plot
- ncol
number of columns in the output figure.
- per1000
logical indicator to multiply results by 1000.
- thresholds
a vector of thresholds (on the mortality scale) defining the discrete color scale of the maps.
- intervals
number of quantile intervals defining the discrete color scale of the maps. Required when thresholds are not specified.
- size.title
a numerical value giving the amount by which the plot title should be magnified relative to the default.
- legend.label
Label for the color legend.
- border
color of the border
- size
size of the border
Value
a list of True Classification Probability (TCP) tables, a list of individual spplot maps, and a gridded array of all maps.
References
Tracy Qi Dong, and Jon Wakefield. (2020) Modeling and presentation of vaccination coverage estimates using data from household surveys. arXiv preprint arXiv:2004.03127.
Examples
if (FALSE) { # \dontrun{
library(dplyr)
data(DemoData)
# Create dataset of counts, unstratified
counts.all <- NULL
for(i in 1:length(DemoData)){
counts <- getCounts(DemoData[[i]][, c("clustid", "time", "age", "died",
"region")],
variables = 'died', by = c("age", "clustid", "region",
"time"))
counts <- counts %>% mutate(cluster = clustid, years = time, Y=died)
counts$strata <- NA
counts$survey <- names(DemoData)[i]
counts.all <- rbind(counts.all, counts)
}
# fit cluster-level model on the periods
periods <- levels(DemoData[[1]]$time)
fit <- smoothCluster(data = counts.all,
Amat = DemoMap$Amat,
time.model = "rw2",
st.time.model = "rw1",
strata.time.effect = TRUE,
survey.effect = TRUE,
family = "betabinomial",
year.label = c(periods, "15-19"))
est <- getSmoothed(fit, nsim = 1000, save.draws=TRUE)
tcp <- tcpPlot(est, DemoMap$geo, by.geo = "REGNAME", interval = 3, year.plot = periods)
tcp$g
} # }